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Based on a dynamic version of the density-functional theory, we obtain a stationary density profile
around a particle in a shear flow and calculate the shear viscosity of monatomic liquids. Our results are
compared with those obtained from both equilibrium and nonequilibrium computer experiments. An
approach similar to the one developed for the shear viscosity is suggested, which in principle enables us
to calculate a friction constant and consequently a self-diffusion constant, and some results from the

zeroth order approximation are presented.

PACS number(s): 66.20.+d, 05.60.+w

The density-functional theory (DFT) for nonuniform
liquids plays an important role in quantitative studies on
freezing and glass transitions of liquids and on the related
problems including the liquid-crystal interface and nu-
cleation [1,2]. It is also useful in studies of liquid proper-
ties such as the radial distribution function and equation
of state [3]. In view of the wide applicability of the DFT,
we recently gave a dynamic extension of the DFT by
deriving a Langevin-diffusion (LD) equation for time evo-
lution of the density field n(r;t) [4,5]. General properties
of the LD equation, such as two H theorems describing
relaxation to equilibrium and the origin of a multiplica-
tive noise current, are discussed in detail in Ref. [5].

In this paper we apply the LD equation to investigate
shear viscosity of monatomic liquids. For this purpose
we consider a stationary shear flow and a stationary den-
sity profile n(r) around an arbitrary particle, which is
considered to be put on the origin in our coordinate sys-
tem. If there were no shear flow, the stationary density
profile ny(r) would be given, with use of the radial distri-
bution function g(r) and the equilibrium uniform density
n;, as n;g(r). The density profile ny(r) deviates from
n; g(r) because of the shear flow, and this deviation can
be used to calculate a shear part of the stress tensor, thus
yielding the shear viscosity [6]. Later we will generalize
this idea to a friction constant.

Let us start from the general LD equation [5]

an(r;t)

ot
where the (nondimensional) free energy functional F is
given by

F=fdrn(r){1n[n(r)A3]—1}

=D, V-{n(r;t)V8F /8n(r;t)—f(r;t)} , (1)

~ 3 [dr - [do(Culry, ... 1) /K
k=1

X{n(r)=ng} - {n(x)—n},

(2)
with C; and A denoting the direct correlation function of
kth order and the thermal wavelength, respectively. The
random flow f(r;¢) satisfies the fluctuation-dissipation
theorem (FDT)
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(filr;)f;(x'5¢")) =2n(r;2)8(r—r')8(t —1')8;; /D, .
(3)
The bare diffusion constant D,, [7] is defined to be
D,=kgT/(mT), 4)

where kg T (=1/B) and m denote temperature in energy
unit and mass of a liquid atom, respectively. The 1/T is
a measure of a relaxation time for a particle to attain a
Maxwellian distribution in momentum space. Thus 1/T
is not related to any slowing down observed in dense
liquids. We will confirm this assertion later in connection
with the density dependence of 1/I". We consider the
simplest version of the DFT in which we retain terms up
to k =2 in the expansion in Eq. (2) and neglect the ran-
dom flow f(r;z) on the right-hand side of Eq. (2) [2].
Thus our theory takes into account pair correlations
only, with all the higher order correlations, represented
by C, (n =3) neglected. As will be shown later, this ap-
proximation reproduces experimental viscosity rather
well for stable (nonsupercooled) liquids. For denser su-
percooled liquids, higher order correlations are expected
to play more and more important roles in producing the
effective (cage) field 8F /8n(r,t) [see Eq. (1)], which
confines a particle in a small region, thus reducing free-
dom for particle motion [8]. Taking into account effects
of both stationary flow u(r), producing particle flow
n(r;t)u(r), and the force field —V¢(r) due to the particle
at the origin, producing particle flow —BD,n(r;¢)Vé(r),
we obtain from Eq. (1)

on(r;t) _

ot —V-J(r;t), ()

J(r;t)=—D,Vn—BDynV | [dr'Vgllt—r'n(r';t)

+¢(r)]+nu(r) , (6)

where ¢(r) denotes the interatomic potential, V g(r)
=—kgTC,(r)=—kgTC(r), and the direct correlation
function C(r) is related to A(r)=g(r)—1 by the
Ornstein-Zernike equation [3]
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h(r)=C(r)+n, [drC(t—rh(r) . )

Since we are interested in a stationary density profile, we
put 9n(r;¢)/3t =0 in Eq. (5) and replace n (r;t) by n(r).
First let us consider the equilibrium solution n.4(r) when
u(r)=0. In this equilibrium case, J(r)=0 and it is readi-
ly seen from Eq. (6) that

In[g(r)]=In[n(r)/n;]
=—BnLfdr'Veﬁ(|r—r’|)[g(r’)—1]—3¢(r) , (8)

where the boundary condition n(r)—n; as r— o is
taken into account. From the relation —BV 4(r)=C(r),
we immediately notice that Eq. (8) is equivalent to the
hypernetted chain (HNC) equation for g (#) [3]. Thus our
approach, when applied to an equilibrium situation, gives
the HNC theory for g (7).

Coming back to effects of velocity field u(r), we consid-
er a shear flow

u(r)="Yye, , 9

where e, denotes a unit vector in the x direction and Y is
a rate of strain. Assuming that Y is small, we seek a solu-

tion of the form
ng(r)=n; g(r)[1+w(r)Y/D,+o(Y)], (10

where o(Y')/Y—0 as Y—0 and g(r) is given from the
HNC equation, as we have just seen above. Inserting Eq.
(10) into Eq. (5), we obtain from dn /3¢ =0,

gVw—n; gV?H(r)+Vg-Vw—n, Vg-VH(r)
(11)
(12)

=xyg'(r)/r,
H(n= [drc(r—rDg(rw(r) .

As will be discussed below, Eq. (11) turns out to have a
solution of the form [6]

w(r)=xyA(r), (13)

with A4 (r), a function of magnitude of r, satisfying the
complicated integro-differential Eq. (20) below. Once the
solution A4 (r) to Eq. (20) is found, we can calculate the
x -y component of the stress tensor [3,6],

Oy =(ng /2)fdrxy¢’(r)nst(r)/r

=(n,2Y/2D,) [ dr(xy)’g(r)¢'(r) A(r)/r , (14)
where ¢'(r)=d¢/dr, and we have neglected a kinetic
contribution to Oy since it is very small at a liquid den-
sity. From the definition of the shear viscosity 7,
0., =7MY, we finally have

n=(n.2/2D,) [ dr(xy)’g(r)$'(r) A (r)/r

=(2mn,2/15D,) [drrigd' 4 . (15)

Now we turn to the derivation and the method of solu-
tion of Eq. (20). First we note that a Fourier transform
(FT) of a function xyf (r), with f(r) an arbitrary function
of r=|r|, is given by
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fdrxyf(r)exp(ik-r)

=(k.k, /K — T7Hk)+Tyk)/k], (16)

where 7, denotes a FT of f(r). Similarly an inverse FT
of a function k, k,, T (k) is given by

(2m) 72 [ dk k k, T ;(k)exp(—ik-r)

=(xy/r ) —f"(r)+f'(r)/r].  AD

Using Egs. (12), (13), and (16), we have
Tp(k)=k.k, Ty(k), (18)
Ty(k)=[Ck)/k* ][ — T4 (k) + Ty (k) /k] . (19)

From Egs. (17) and (18), we see that H(r) has the same
form as w(r), Eq. (13), and we obtain from Eq. (11), after
simple algebra,

[P24)"+(2/r+g'/g)[+* A —6A4 +n, (N"—N'/r)
+n (8" /8)M"—M'/r)=rg'/g ,

where N (r) is the inverse FT of T y(k)=—k2T (k).

In order to solve the inhomogeneous linear equation
(20) for A(r), we regard the function A4 (r) as an N-
dimensional vector a={q;} (i=1,...,N), with
a;= A (r=Ai), and transform Eq. (20) to a linear alge-
braic equation

(20)

> L;ja;=b;, or La=b, (21)
J
where b; =(Ai)g'(r=Ai)/g(r=Ai) and L is an NXN
matrix. We note that both differentiation with respect to
r and the (inverse) FT of A (r) are linear operations,
which can be described with the use of appropriate (non-
diagonal) N XN matrices L 4 as L ja. As to a simple
multiplication like 72 A4(r), this is expressed as L a with
the use of a diagonal matrix L, ; j=(iA)28ij. This ex-
plains how we get Eq. (21). Usually we find that elements
of the matrix L;; vanish for Ai <r,=Ai, because of the
structure of the radial distribution function g (r), and the
L has no inverse matrix. To remove this difficulty, we
reduce the size of the vector a (the matrix L) from N
(NXN)to N—iy [(N—iy)X(N —i,)] and obtain a solu-
tion to Eq. (21) or (11) for r = r,. Since a small r region
does not contribute to the integral in Eq. (14), because of
the presence of g (r), our method of solution to Eq. (21)
presents no problem. We tried several values for A and N
and obtained a reliable solution to Eq. (11).

We now apply the theory developed above to a soft-
core system [9,10], with the interaction ¢(r) given by

o(r)=ela/r) (n=12), (22)

for which a thermodynamic state is specified by one pa-

rameter
p*=03N/V)/(kgT/€)'* . (23)

The freezing and the melting points of the n =12 soft-
core system are p*=1.150 and p,, * =1194, respectively
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[9]. About 20 years ago Ashurst and Hoover (AH) per-
formed a nonequilibrium molecular dynamics (MD) to
study dense-fluid shear viscosity [11]. By simulating a
Couette flow, they successfully obtained (stationary)
nonequilibrium pair distribution function ny(r), Eq. (10).
In Fig. 1 we compare 7)’s from our theory, nppr, and
from computer experiments, 7,y. It is appropriate here
to explain how we determine the bare diffusion constant
D,, Eq. (4). As noted before, 1/I" represents a relaxation
time for a local momentum distribution to attain a
Maxwellian distribution. This is roughly estimated, with
thermal velocity vy, =(kpT/m)!/? and the average inter-
particle distance I =( V/N)'/3, to be

I '=a(l/vy) . (24)

That is, we assume that T' ! is of the order of the mean
collision time, with a a parameter not determined within
our theory. In plotting Fig. 1 we adjusted a so that yppt
coincides with n,y at p*=1.1(a= ). From Fig. 1 we
see that our theory can reproduce the overall experimen-
tal results rather satisfactorily below the freezing point.
Ashurst and Hoover expressed the nonequilibrium sta-
tionary pair distribution as [11]

ne(r)=nyg(r)[1+(xy/r2v(r)Y] . (25)

The v(r) in Eq. (25) is related to A4 (r), defined by Eq.
(13), via w(r)= A (r)r?/D,. For convenience of compar-
ison we express the shear viscosity as

1=(an,*/15) [ “dr¢'(rr°B(r) (26)
where B (r)=g(r)v(r)/r?, and also from our theory it is
g(r)A(r)/D,.

If one employs a Maxwell model =G 7,,, with G and
Ty the rigidity and the Maxwell viscoelastic relaxation
time, respectively, the w(r) in Eq. (25) becomes
vy (r)=—1yrg'(r)/g(r) [11]. In Fig. 2 we plot three
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FIG. 1 Shear viscosity 7=7n{0?/(me)'"*}(kzT/€)"*"* from
our theory #jpgr (dotted curve) and the nonequilibrium MD by
Ashurst and Hoover 7,y (full curve) as functions of p* in the
region below a freezing point p . * =1.15.
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FIG. 2. B(r) from our theory Bpgr(r) (dotted curve), the
nonequilibrium MD B ,y(7) (full curve), and the viscoelastic ap-
proximation Byg(r) (dashed curve) for p*=0.81.

B(r): Bpg(r) from Ref. [9], Bpgr(7) from our theory,
and B, (r) from the Maxwell model, with 7;, chosen to
give good fit to B,y(r)(p*=0.81). Although there is
some discrepancy in magnitude of B (r) between B sy (7)
and Bpgr(7), the agreement with experiment is not bad,
especially in view of the fact that we are comparing the
integrand for the viscosity. In passing we note that if « is
changed from L to &, Bau(r) and Bpgy(r) nearly coin-
cide. Our theory is compared to the Maxwell model for
various p* values by plotting in Fig. 3 g(r)A(r) and
—g'(r)/r, which are mutually related via g(r)A4(r)
=—[g'(r)/r](Dy7y). It is seen from Fig. 3 that our
theory is well correlated with the Maxwell model, al-
though we cannot directly compare the magnitude of
these functions because of the different scales. To study
shear viscosity of a soft-core (n =12) system in the
higher density (supercooled) region (p* 2 p*), Amar and
Mountain [12] performed equilibrium MD experiments
and obtained 7 with the use of the Green-Kubo formula.
In Fig. 4 we compare npgrr With 77,y in a supercooled re-
gion of p* and notice that the agreement between theory
(dynamic DFT) and experiment deteriorates as the densi-
ty becomes high. This is expected because our theory is
based on the crudest approximation for F[r] and conse-
quently uses, as the input data, g(r) from the HNC
theory.

Up to now we have been concerned with shear flow
and shear viscosity. In view of the importance of the
Stokes law [13] for high density liquids, it is of some in-
terest to extend our approach so that it can be used to
study a friction constant £. For this purpose, we consider
a particle fixed in a uniform flow

u(r)=uqe, . (27)

Of course we know from hydrodynamics [14,15] that the
flow pattern is considerably distorted from the one ex-
pressed by Eq. (27) near the origin because of the pres-
ence of the fixed particle. In spite of this fact let us em-
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FIG. 3. Comparison of g(r)A(r) from our theory (a) and
—g'(r)/r from the viscoelastic approximation (b) for various
p*, the values of which are indicated.
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FIG. 4. Shear viscosity 7} from our theory 7%pgr (dotted
curve) and the equilibrium MD by Amar and Mountain 7oy
(full curve) as functions of p* in the region of supercooling.
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ploy the flow (27) in our diffusion equations (5) and (6)
and express a stationary density profile n(r) around a
fixed particle as

ng(r)=n g(r)[1+w(r)uy/D,+o(Y)], (28)

for small u,. Inserting Eq. (28) into Eq. (5) with
on /3t =0, we have

gVw—n; gV*H(r)+Vg-Vw—n; Vg-VH(r)=xg'(r)/r .
(29)

Instead of Eq. (13) we have a solution to Eq. (29) of the
form w(r)=xA(r), with

[rd]"+(2/r+g'/g)rAY
—(2/rVA+n K'+n,(g'/g)G"=g'/g , (30)

where K(r) and G(r) are the inverse FT of
Tg(k)=kTc(k)T,, (k) and Tg(k)= Tx(k)/k?, respec-
tively. The friction constant is obtained by calculating
the force F on a fixed particle due to the flow (27). Thus
from

F= [drng(r)Ve(r)=¢uge, , 31

we have
§=(nL/3Db)fdrg(r)r¢’(r)A(r) . (32)
Figure 5 shows the self-diffusion constant

Dppr=kpT/(m{) together with the simulation results
D ¢ [10], with a in Eq. (24) set to be the same as before.
As expected from our neglect of effects of flow
modification near a fixed particle, the discrepancy be-
tween theory and experiment in the self-diffusion con-
stant is larger than that in the shear viscosity. If we take
into account a more realistic flow field around a fixed par-
ticle, we obtain better results, and this point is left for fu-
ture investigation.

Finally, in Fig. 6, we show the density profile n(r);

03 F T T T T T T T T

0.2 -

FIG. 5. Self-diffusion constant D=Do " Y(m /kyT)"*(kzT/
€)!/'2 from our theory Dppr (dotted curve) and computer exper-
iments D.,; (full curve) [10].
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more precisely, ny(x,y,z2=0), in a uniform flow
(p*=1.0), where we choose a rather large value for u,
[=0.361/7, 7=1(m /€)'’*(1/0)°] in order to make the
deviation of ny(r) from n;g(r) visible. The front side is
seen to be denser than the rear side, which as a whole
produces the drag on the particle fixed at the origin,
x =y =z =0, Eq. (31).

In this paper we developed a simple theory for the
shear viscosity and the friction constant based on a dy-
namic DFT, which is somewhat modified to take effects
of a flow field into account. Application to the soft-core
system (n =12) shows that it works rather well for stable
liquids. We note that g(r) is determined from the HNC
theory, Eq. (8), within the framework of our theory, in
sharp contrast to other previous theories, which, similar

2581

FIG. 6. The stationary density profile
ng(x,y,z=0) around a particle.

to our approach, aim at calculating the distortion of g (r)
due to a flow field [6]. Although in this paper application
of a dynamic DFT is limited to a simple liquid, we note
that it is applicable to more complex liquids, such as
binary mixtures and molecular liquids, on which we hope
to report in the near future.
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